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ABSTRACT
We present an effective way to predict search query-item relation-
ship. We combine pre-trained transformer and LSTM models, and
increase model robustness using adversarial training, exponential
moving average, multi-sampled dropout, and diversity based ensem-
ble, to tackle an extremely difficult problem of predicting against
queries not seen before. All of our strategies focus on increasing
robustness of deep learning models and are applicable in any task
where deep learning models are used. Applying our strategies, we
achieved 10th place in KDD Cup 2022 Product Substitution Classi-
fication task.

CCS CONCEPTS
• Information systems → Query representation; • Applied
computing → Online shopping.
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1 INTRODUCTION
KDD Cup 2022 presents a problem of having to accurately describe
the relationship between user search queries and shopping items, in
motivation to improve customer experience and search engagement.
The competition presents Shopping Queries Dataset [7], a multilin-
gual e-commerce dataset in three languages: English, Spanish and
Japanese.

Among the three tasks presented in the competition, the goal of
“Product Substitute Identification” (task 3) is to correctly identify
whether a search query and and an item are in a substitute relation-
ship or not. A relationship is considered substitute when an item
fails to fulfill some aspects of the query but can be functioned as sub-
stitute of a completely relevant item. The competition’s evaluation
metric is Micro F1 Score as classes are imbalanced.
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In this work, we discuss a simple but effective model architecture
and training techniques that placed us among top-10 solutions in
KDD Cup 2022. Built upon a solid validation strategy, where models
are evaluated based on “unseen” query - item pairs, our solution
is a simple combination of pre-trained transformer [8] [3] and
LSTM [5], trained using effective techniques to increase model
robustness, such as exponential moving average of weights, multi-
sampled dropout, dynamic learning rate scheduling for different
layers. Our final solution is a mix of models fused with diversity
based ensemble. As all our strategies are task-independent and
focus on increasing robustness of deep learning models in general,
we believe our methodologies are easily applicable to any other
tasks where deep learning models are used.

2 PROPOSED SOLUTION
2.1 Redefining the Problem
We realized that dataset had been split into train and public test set
grouped by queries, so that queries in public test set do not appear
in train set and vice versa. So we redefine the problem as identifying
relationship between “unseen” queries and items, which makes the
problem extremely difficult. Realizing this difference was crucial as
wrong validation strategy may not be able to properly mimic the
competition evaluation environment.

2.2 Validation Strategy
When dataset is split into a regular random train-test split, model
training worked relatively well and validation loss would success-
fully decrease for 8 to 10 epochs. However, same model, trained the
same way, on a train-test split where sets of queries (ex. airpods)
would appear only on either train or test set, model training will not
work well and validation loss would not decrease for a single epoch.
We presume this occurs as the given problem is not a general text
classification task but requires identification of two texts: search
query and item. So we decided to split the given train dataset in
the same manner.

As there exists class imbalance between substitute labels and
non-substitute labels, we use stratification to ensure equal distri-
bution of each class in local train and test sets. To sum up, we use
StratifiedGroupKFold cross validation, where K is 5, and grouped
on queries, and determined model performance solely upon micro
f1 score on all folds.

All of our experiments are run in a strict comparison environ-
ment, where there always exists a control model for comparison and
only a single hyper-parameter would be changed for the experiment
model.
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Table 1: Model Performance for each Technique Applied

Technique Cross Validation Score Relative Gain/Loss vs. Control
DeBERTa-v3-Large (Baseline) 0.8229 +0.0000

Add LSTM Head 0.8226 -0.0003
Add LSTM Head with higher LR 0.8234 +0.0005

Adversarial Training 0.8262 +0.0028
Exponential Moving Average 0.8265 +0.0003

Multi-Sampled Dropout 0.8267 +0.0002
Cosine Schedule→ StepLR 0.8267 +0.0005

XLM-RoBERTa-Large 0.8237 -0.0026
RemBERT 0.8247 -0.0030

2.3 Model Backbone
We started out the competition, after some exploratory data anal-
ysis, with an agressive model selection. We tried out both classic
LSTM models and pre-trained transformers and the latter scored
around 0.05 higher in previously mentioned cross validation setting.
Including the multilingual-BERT model [3] used as competition
baseline model, we tried out manymodels including XLM-RoBERTa
[2], RemBERT [1] to check basic model performance. DeBERTa-V3-
Large [4] came out to be the most effective pre-trained model by
far, achieving micro-f1 score of 0.8229, and selected as our baseline
model.

For model input, we concat search query and item titie using
special token in following manner: “<Query> [Special Token] <Item
Title>”. Item title goes through a very simple preprocessing of
only cleaning special characters. More intense cleaning, such as
underscoring, deterioratedmodel performance. Maximum sequence
length is set to 78, covering approximately 99.7 percent of all data
samples.

2.4 LSTM Head
We improve our model structure by adding an LSTM layer after De-
BERTa backbone. Note that the added LSTM layer is not pre-trained.
As training finished in one or two epochs, applying DeBERTa-V3-
Large’s learning rate of 5e-6 was not adequate and actually led to
a decrease of -0.0003 in f1 score. So the LSTM layer would need
higher learning rate than other pre-trained layers. We initially set
learning rate for pre-trained DeBERTa layers to 5e-6 and LSTM
layer to 1e-3 and use learning rate scheduling to decrease the rates
during model training. Applying LSTM head with adjusted learning
rate led to a f1 score gain of +0.0005.

2.5 Adversarial Training
We apply Adversarial Weight Perturbation [9] to increase model
robustness. We use adversarial learning rate of 1e-4. Starting adver-
sarial training from the very beginning was most effective, instead
of starting at a later period (ex. epoch 2), as entire training ended
in a very short period. After applying Adversarial Weight Pertur-
bation, training became much more stable: validation loss would
decrease for 3 to 4 epochs instead of a single epoch. This led to a f1
score gain of +0.0028.

2.6 Exponential Moving Average
We calculated exponential moving average of weights during mini-
batch training. We applied a decay of 0.999 when calculating new
average of weights. Doing so led to a relative micro-f1 score gain
of +0.0003.

2.7 Multi-Sampled Dropout
We applyMulti-SampledDropout [6] for better generalization. After
DeBERTa’s pooling layer, we add 5 dropout layers with different
masks, each with a dropout rate of 0.5. Output of each dropout
layers will be passed to fully connected layers, which all share the
same weights. Output of all fully connected layers were averaged.

At this point, the final model structure is shown in Figure 1. It
is a simple model with a pre-trained DeBERTa backbone, LSTM
head, pooling layer initialized using pre-trained DeBERTa weights,
multi-sampled dropout layers, and finally the classification layer.

2.8 Learning Rate Scheduling
We used cosine learning rate scheduling throughout the competi-
tion. Towards the end of competition, we tried out StepLR schedule
with decay every epoch, decayed by gamma of 0.2. Changing learn-
ing rate scheduler resulted a +0.0005 change in competition metric.

2.9 Diversity based Model Ensemble
After applying all modifications mentioned above, we re-trained the
top few backbone models for a secondary model selection, to check
whether our modifications would impact some backbone models to
a greater degree and to use some of the models in ensemble. As a
result, the RemBERT model, which had a -0.003 f1 score loss in the
original model selection, came out close second with only 0.0003
score difference with DeBERTa-V3-Large. Although applying both
2.6 Exponential Moving Average and 2.7 Multi-Sampled Dropout
led to a total of +0.0005 score gain for DeBERTa-V3-Large model, we
can see that applying the same strategies on the RemBERT model
led to much greater score gain.

In addition to a soft-voting based ensemble, a technique where
model prediction probabilities are summed to get final predictions,
we use a diversity based approach when ensembling different mod-
els. For model diversity, instead of using the same backbone twice
during model ensemble, it was shown to be more effective to use
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Figure 1: Visualization of Final Model Structure

two different backbones, even if it’s single model score was rela-
tively lower. Along with DeBERTa-V3-Large and RemBERT models,
using the XLM-RoBERTa-Large model, despite its lower f1 score, in
the end led to both highest public and private leaderboard scores
among all ensemble combinations.

For data diversity, we ensured each of our ensemble models
were trained on different datasets. We realized two days before
the end of competition that there was some non-overlapping data
between task1 and task 3. As more data can make deep learning
models more robust, we secured task 1’s non-overlapping 234,286
samples of data, which is a 12.8 percent increase in the numbers
of total train data. Table 2 shows cross validation scores for the
combined dataset. Note that cross validation scores decrease when
evaluated on the combined dataset which does not mean decrease
in model performance but a change due to the extra data. In the
end, we selected DeBERTa-V3-Large validated on fold 0 and trained
on the rest, and RemBERT model validated on fold 2 and trained on
the remaining folds. Unfortunately, we had to use XLM-RoBERTa-
Large model trained only on task 3 data and could not apply some
techniques such as multi-sampled dropout and exponential moving
average, due to time constraints.

Table 2: Final Submitted Models Summary

Model CV (Task 1+3) 2.4 2.5 2.6 2.7 2.8
DeBERTa-v3-Large 0.8165 O O O O O

RemBERT 0.8162 O O O O O
XLM-RoBERTa-Large - O O X X O

Table 2 describes our set of final models. In summary, our final
submission uses three backbone models: DeBERTa-v3-Large, Rem-
BERT, and XLM-RoBERTa-Large. For the first two models, both
task 3 and task 1 data were used for training.

2.10 Accelerated Inference
The competition submission environment used a single NVIDIA
V100 GPU (16GB RAM) and had a timeout of 120 minutes for docker
environment setup and both public and private test set evaluations.
To maximize the number of models used for ensemble, we applied
float16 precision, which improved inference speed by 2.3 times.

More specifically, we were able to reduce inference time of public
test set’s 277044 samples for a DeBERTa-v3-Large model, from 23
minutes to 10 minutes when sequence length was 78. For sequences
of length 256, inference time decreased from 82 minutes to 36
minutes.

Table 3: Inference Times for Different Float Precisions

Sequence Length Float32 Precision Float16 Precision
78 23 minutes 10 minutes
256 82 minutes 36 minutes

3 CONCLUSION
In this work, we discussed our approach of effectively capturing the
relationship between search queries and shopping items, as part of
our 10th place solution in KDD Cup 2022. Built upon a solid valida-
tion strategy, where models are evaluated based on “unseen” query
- item pairs, our solution is a simple combination and pre-trained
transformer backbone and LSTM head, trained using techniques to
increase model robustness, including adversarial training, exponen-
tial moving average, multi-sampled dropout, dynamic learning rate
scheduling for different layers. Our final solution is an ensemble
of models selected based on both model and data diversity. We
believe our methods presented in this paper would help increase
robustness of deep learning models in general.
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