
KDD CUP 2022 MULTICLASS PRODUCT CLASSIFICATION:
TEAMMetaSoul SOLUTION

Zhichao Feng
Beijing University of Posts and

Telecommunications
Beijing, China

fengzc@bupt.edu.cn

Jiawei Lu
Beijing University of Posts and

Telecommunications
Beijing, China

lujiawei@bupt.edu.cn

Junwei Cheng
Beijing University of Posts and

Telecommunications
Beijing, China

cjwse205@bupt.edu.cn

Ke Hou
Beijing University of Posts and

Telecommunications
Beijing, China

houke1237@bupt.edu.cn

Kaiyuan Li
Beijing University of Posts and

Telecommunications
Beijing, China

tsotfsk@bupt.edu.cn

Pengfei Wang
Beijing University of Posts and

Telecommunications
Beijing, China

wangpengfei@bupt.edu.cn

Yadong Zhu
Beijing Shuyuanling Technology Co.,

Ltd.
Beijing, China

sunkai@dmetasoul.com

ABSTRACT
Multi-product classification is a task of Amazon’s ESCI challenge,
which gives queries and corresponding lists of products and re-
quires contestants to classify each product as an exact, substitute,
complementary, or irrelevant match for the query. Due to the un-
even distribution of the product’s class and the noisy information in
the results, it’s hard to classify the products into different relations.
While in this paper, we introduce our solution for this multi-product
classification task. We firstly build a single tower bert-based model
to classify the relationship between query and product, then utilize
many tricks, including adversarial method,multi-sample dropout,
and weight averaging evaluation method, to enhance the model’s
robustness or accuracy. Also, we use the weighted average method
to ensemble the model parameters of different training steps to-
gether first and then the output of different models as the final
result. Our solution achieves an overall Micro-F1 of 0.8207, which
wins fifth place in the final leaderboard1.

KEYWORDS
BERT, Query-Product Classification, Multilingual, Data Challenge
ACM Reference Format:
Zhichao Feng, Jiawei Lu, Junwei Cheng, Ke Hou, Kaiyuan Li, Pengfei Wang,
and Yadong Zhu. 2022. KDD CUP 2022 MULTICLASS PRODUCT CLASSIFI-
CATION: TEAM MetaSoul SOLUTION. In KDD Cup 2022 Workshop: ESCI
Challenge for Improving Product Search, August 17, 2022, Washington, DC,
USA. ACM, New York, NY, USA, 4 pages.
1Our code is publicly available at https://github.com/guijiql/kddcup2022

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDDCup ’22, August 17, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).

1 INTRODUCTION
In this paper, we focus on the second task of the KDD Cup, a
multi-class product classification task [9] which aims to predict the
relationship between the query and the product retrieved for this
query using the query statement and the product metadata. We
need to address the noisy information in the results, the difficulty
of understanding the query intent, and the too much variety of the
items to finally solve this problem. To achieve the target, we uti-
lized single-tower models based on Bert for classification. Specially,
we used the multilingual versions of DeBERTa and RoBERTa as
backbones. We also added several tricks and post-process models
by model parameters ensemble on this basis.

The outline of the rest of the paper is as follows. First, we describe
the methods we used in the challenge, including model methods,
training methods, evaluation methods and post-processing. Next,
we discuss the performance of our methods. Finally, we draw a
conclusion through discussing our empirical findings.

2 METHOD
In this part, we introduce our methods in detail. The structure of
our model is shown in Fig 1. Firstly, we perform word tokenization
on the preprocessed query and product text. Then we put them
into the bert to get embedding information. At this part, we also
use several kinds of bert and we’ll introduce them later. Finally we
use the [CLS] token of bert with tricks to classify the input data.
Our models will be introduced from three following aspects: model
method, training method and evaluation method.

2.1 Model Method
DeBERTRa V3. DeBERTa[5] improves the BERT class models

using disentangled attention and enhanced mask decoder. To go
further, DeBERTa V3 uses the ELECTRA-Style pre-training method
which replace MLM task with RTD(Replaced Token Detect) task

KDDCup ’22, August 17, 2022, Washington, DC, USA Zhichao Feng, et al.

Figure 1: The structure of our model. Our backbone is a single-tower model. On the right of the figure are some of the tricks we
tried. The output of classifier layer is probability of four classes.

accompanied by Gradient Disentangled Embedding Sharing and
outperforms initial DeBERTa on many downstream tasks. We use
mDeBERTa V3 base which comes with 12 layers and a hidden size
of 768 to encode the multilingual query and product information,
we also use DeBERTa V3 large which comes with 24 layers and a
hidden size of 1024 to encode the English information.

XLM-RoBERTa. XLM-RoBERTa[1] model fine-tunes not only
with traditional MLM(Masked Language Modeling) method, but
also with the CLM[2](Casual Language Modeling) which uses the
precedingwords to predict nextword’s probability and TLM[2](Translation
Language Modeling) to guide model aligning the representation
among multi-languages. Besides, it also uses sharing sub-word dic-
tionary to increase the tokens distributed to low-resource language
and ease the prejudice of high resource language. We use the XLM-
RoBERTa which comes with 12 layers and a hidden size of 768 to
encode the multilingual information.

Multi-Sample Dropout. Multi-sample dropout[6] is an enhanced
dropout technique that can accelerate training and improve gen-
eralization comparing to the original Dropout. It creates multiple
dropout samples which calculate loss separately and use the av-
erage of the previous step to obtain the final loss. Multi-sample
dropout can implement without much extra cost by sharing weights
among the duplicating layers after the dropout layer.

2.2 Training Method
Adversarial Weight Perturbation. In the training phase, we uti-

lized adversarial training. Adversarial training is common in NLP
tasks. Usually, it’s used to perturb the input or model parameters
to construct adversarial examples and improve the robustness of
the model during training. This method can also be considered
as a regularization method to reduce overfitting and improve the
generalization[3]. In this challenge, we tried adversarial weight
perturbation(AWP) [10]. AWP perturbs both input and model pa-
rameters, and constrains the size of the perturbation to the times of
parameter itself. The AWP formula we used is shown as equation 1:

𝑤𝑖 ↦→ 𝑤𝑖 + 𝛿𝑤𝑖 = 𝑤𝑖 + 𝛾
∇𝑖
∥∇𝑖 ∥

∥𝑤𝑖 ∥,

|𝛿𝑤𝑖 | ≤ 𝜖 |𝑤𝑖 |
(1)

where 𝑤𝑖 denotes the i-th parameter of model, ∇𝑖 denotes the
gradient of it.

Label Smoothing. To address the problem of overfitting and over-
confidence, we’ll introduce the Label Smoothing method. One-hot
encoded label, commonly used, is not calibrated and always owns
higher predicted probabilities, making the model less adaptive and
more confident about its predictions. While Label Smoothing in-
troduces noise for the labels to solve this problem, it regularizes a
classificationmodel with k output values by replacing the hard 0 and
1 classification targets with targets of 𝜖

𝑘−1 and 1−𝜖 respectively[8].

2.3 Evaluation Method
Exponential Moving Averages. Exponential Moving Averages

(EMA) [4] is a type of moving average method, which applies more
weight to the most recent data pints than those which happened in
past. In other words, it is likely to give more importance to the last
experience or memories than to older ones, the formula of EMA is
as Equation 2.

𝑣𝑡 = 𝛽 · 𝑣𝑡−1 + (1 − 𝛽) · 𝜃𝑡 (2)
𝜃𝑡 represents the model weights at time 𝑡 , 𝑣𝑡 represents the

average of previous 𝜃 before 𝑡 which is also called shadow weights
and 𝛽 represents the weighted weight. In the process of gradient
descent, the shadowweight 𝑣𝑡 will bemaintained but not participate
in the training. The basic assumption is that the model weight will
wobble at the actual optimum point in the last n steps. Thus we
take the average of the last n steps to make the model more robust.

Stochastic Weight Averaging. Stochastic Weight Averaging(SWA)
[7] uses simple averaging of multiple points along the trajectory of
SGD, with a cyclical or constant learning rate to achieve a better
optimization result.Intuition for SWA comes from that the local
minimum generated at the end of each learning rate cycle tend to

KDD CUP 2022 MULTICLASS PRODUCT CLASSIFICATION: TEAM MetaSoul SOLUTION KDDCup ’22, August 17, 2022, Washington, DC, USA

Table 1: Summary of the sampled dataset, including the num-
ber of unique queries, the number of judgements, and the
average number of judgements per query.

Language #Queries #Judgements Avg. Depth
English 7,479 140,220 18.7
Spanish 1,143 26,422 23.1
Japanese 1,378 33,446 24.3
US+ES+JP 10,000 200,088 20.0

accumulate on the edge regions of the loss surface and the loss value
on these edge regions is small. By averaging several such points,
it is quite possible to obtain an even lower loss, global universal
solution

Instead of ensemble several models, two models are used to
achieve SWA. The first model(𝑤𝑆𝑊𝐴) stores the running average of
model weights and the second model(𝑤) traverses the weight space
and explores it by using a cyclical learning rate schedule. At the
end of each learning rate cycle, the current weights of the second
model will be used to update the weight of the running average
model by taking weighted mean between the old running average
weights and the new set of weights from the second model.

𝑤𝑆𝑊𝐴 ←
𝑤𝑆𝑊𝐴 · 𝑛𝑚𝑜𝑑𝑒𝑙𝑠 +𝑤

𝑛𝑚𝑜𝑑𝑒𝑙𝑠 + 1
(3)

By following this approach, we only need to train one model
and store two models in memory during training. For prediction,
we just need to predict on the second model𝑤𝑆𝑊𝐴 .

2.4 Post Processing
Inspired by EMA, we consider it is beneficial to maintain moving
averages of the trained model parameter, which belongs to different
training steps. When most of the model parameters are generally
consistent within a time window, it indicates that the parameters
around this place are relatively confident, so the moving average
of the parameter will bring significant benefits to the stability and
accuracy of the model. So we use the weighted averages of last
several checkpoint model parameters instead of the last trained
values [7].

3 EXPERIMENT
3.1 Setup
During the early stage, we trained our models on 10,000 randomly
sampled queries of official training dataset, which is called sampled
dataset, to accelerate the verification of our ideas. The summary
of sampled dataset is shown in Table 1. It can be seen that the
proportion of queries across different languages and the respective
average depth are about the same as full dataset, which is shown
in Table 2. The sampled dataset is divided into two parts: training
and valid sets with 80% and 20% percentages.

For classification, we used microsoft/mdeberta-v3-base 2 (short
for mDeBERTa), microsoft/deberta-v3-large 3 (short for DeBERTa-
Large) and joeddav/xlm-roberta-large-xnli 4 (short for XLM-RoBERTa)
2https://huggingface.co/microsoft/mdeberta-v3-base
3https://huggingface.co/microsoft/deberta-v3-large
4https://huggingface.co/joeddav/xlm-roberta-large-xnli

Table 2: Summary of the full dataset, including the number of
unique queries, the number of judgements, and the average
number of judgements per query.

Language #Queries #Judgements Avg. Depth
English 68,139 1,272,626 18.7
Spanish 10,624 249,721 23.5
Japanese 12,687 312,397 24.6
US+ES+JP 91,450 1,834,744 20.1

Table 3: Performance of mDeBERTa with different learning
rates on sampled dataset.

learning rate micro-F1(%)
1e-6 74.11
5e-6 74.05
2e-5 73.32

from HuggingFace. Among them, DeBERTa-Large is only for Eng-
lish queries. The other two models are for all languages. The hyper-
parameters used in the experiment are as follows: the learning rate
of mDeBERTa ranges in [1e-6, 5e-6, 2e-5], and the learning rates of
Deberta-Large and XLM-RoBERTa are 5e-6. We used the AdamW
optimizer in all experiments, 6 epochs, and evaluated models for
four times per epoch.

In the submission stage, we used full official training dataset
and divided it by the same ratio. For mDeBERTa, we used a fixed
learning rate 5e-6, and other settings are the same as the early stage.

3.2 Performance on Sampled Dataset
In this part, we show the results of mDeBERTa model on sampled
dataset. Although this isn’t the exact result, it could still show the
trend that whether the method works.

The performance of mDeBERTa model with different learning
rates is summarized in Table 3. We find that the learning rate has
a great influence on the model performance. Though the micro-
F1 under learning rate 1e-6 is slightly higher, we still used the
learning rate 5e-6 in the following experiments considering the rate
of convergence.

The effect of different tricks on the model is shown in Table 4
. It is clearly shown that AWP can get nearly 0.9% improvement
through adversarial training, while it also brings the problem of
slower training speed. As for the evaluation methods, SWA and
EMA brings an improvement of 0.1% and can also accelerate model
fitting. With SWA or EMA, model can fit in one epoch, which is
much more efficient than 3 epochs of ordinary training. What’s
more, multi-sample dropout get over 0.2% improvement, while label
smoothing get over 0.1%improvement,and both of them don’t have
much effect on speed.

3.3 Offline Performance on Full Dataset
With full data, we used three base models with different model
structures or pre-training data. The results are shown in Table
5. The optimal single model we got was mDeBERTa with AWP.
Although EMA and SWA were positive when used separately, they

KDDCup ’22, August 17, 2022, Washington, DC, USA Zhichao Feng, et al.

Table 4: Performance of models with different tricks on sam-
pled dataset.

model micro-F1(%)
mDeBERTa 74.05
mDeBERTa + EMA 74.15
mDeBERTa + SWA 74.18
mDeBERTa + AWP 74.99
mDeBERTa + Multi-Sample Dropout 74.26
mDeBERTa + Label Smoothing 74.16

Table 5: Offline micro-F1(%) of models on full dataset. SM
represents single model and MPE represents model parame-
ters ensemble.

model SM MPE
mDeBERTa + AWP 76.37 76.41

DeBERTa-Large(only English) 77.3 77.4
XLM-RoBERTa + multidropout 75.55 75.76

Table 6: Online performance of models on full dataset. En-
semble consist of the three models in Table 5.

model Public micro-F1(%) Private micro-F1(%)
mDeBERTa + AWP 81.48 81.72

Ensemble 81.82 82.07

might be negative when combined with multi-dropout or label
smoothing. Similarly, limited by the resources, multi-dropout and
label smoothing can’t be used at the same time. So we ended up
not using them. Moreover, we simply added the parameters of the
two best performing model checkpoints by weight to get model
parameters ensemble. Our results showed that it led to different
extents of improvement.

3.4 Online Performance on Full Dataset
In code submission stage, we used the three models mentioned in
Table 5. Limit by online inference time, we used DeBERTa-Large for
English queries prediction, XLM-RoBERTa for Spanish and Japan-
ese queries prediction, and mDeBERTa for all queries prediciton.
We took the weighted summation of predicted scores as our final
prediction. The ensemble result is shown in Table 6. Our approach
ranked 5th at last.

4 CONCLUSION
In this paper, we fully introduce our solution for the multi-product
classification task. And we find that multilingual bert-based model
can encode the product and query text well. Moreover, adversarial
training method can obviously enhance our model’s robustness
and improve the prediction accuracy. Weighted average method is
deployed to ensemble different training steps’ parameters firstly
and then the prediction of different models. Combining all those
together, our model effectively alleviate the multi-product classifi-
cation problem.

REFERENCES
[1] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-

laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learning
at Scale. In ACL. 8440–8451.

[2] Alexis Conneau and Guillaume Lample. 2019. Cross-Lingual Language Model
Pretraining. Curran Associates Inc., Red Hook, NY, USA.

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR.

[4] Seng Hansun. 2013. A new approach of moving average method in time series
analysis. In CoNMedia. 1–4.

[5] Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. Debertav3: Improving
deberta using electra-style pre-training with gradient-disentangled embedding
sharing. arXiv (2021).

[6] Hiroshi Inoue. 2019. Multi-Sample Dropout for Accelerated Training and Better
Generalization. CoRR (2019).

[7] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and An-
drew Gordon Wilson. 2018. Averaging Weights Leads to Wider Optima and
Better Generalization. In UAI. 876–885.

[8] Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. 2019. When does label
smoothing help?. In NeurIPS. 4696–4705.

[9] Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza,
Sambaran Bandyopadhyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. 2022.
Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product
Search.

[10] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020. Adversarial Weight Pertur-
bation Helps Robust Generalization. In NeurIPS.

	Abstract
	1 Introduction
	2 Method
	2.1 Model Method
	2.2 Training Method
	2.3 Evaluation Method
	2.4 Post Processing

	3 Experiment
	3.1 Setup
	3.2 Performance on Sampled Dataset
	3.3 Offline Performance on Full Dataset
	3.4 Online Performance on Full Dataset

	4 Conclusion
	References

