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ABSTRACT
To improve the users’ shopping online experience, a search en-
gine aims to show a ranked list of items that best match a user’s
query intent. The Query-Product Ranking task is formulated as
search relevance to rank a given query-item pair by relevant labels:
exact, substitute, complement, or irrelevant (ESCI) in the Shop-
ping Queries Dataset, a large dataset of difficult Amazon search
queries and results. However, many existing pre-trained models
suffer from several challenges: noise in the data, inadaptation to
the product data, slow convergence, and overfitting during fine-
tuning. To address these challenges, we use the following methods
in three components—data preprocessing, pre-training, and fine-
tuning, respectively. We use regular expressions to clean the data
and preprocess the data through data splicing, keyword extrac-
tion, and key sentence extraction. Then, we adapt our model to the
domain corpus by Masked Language Model (MLM) pre-training. Fi-
nally, we use ranking loss in fine-tuning to accelerate convergence.
To reduce model overfitting and improve model robustness, we
use Fast Gradient Method (FGM) adversarial training. Experiments
demonstrate that our solution achieves an nDCG of 0.9002 on the
private test dataset with a single model and can rank among the top
10 teams. By using ensemble methods, our models achieve an nDCG
of 0.9028 on private test data and came fourth on the leaderboard.
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1 INTRODUCTION
Improving the quality of search results can significantly enhance
users’ experience and engagement with search engines [2]. When
the front row of the product list returned by the query contains
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irrelevant products, even a small number of irrelevant products will
seriously affect the users’ shopping experience and even affect the
users’ desire to purchase. In addition, common search tasks that only
divide products into related and unrelated ones are not conducive
to optimizing product sequencing results. For example, when a user
searches for “iPhone 11”, the iPhone charger and mobile phone
case will be marked as irrelevant according to the common search
tasks, but in fact, users often search for “iPhone 11” to buy chargers
and phone cases. For this reason, the Query-Product Ranking task
divides relevance into the following four classes to measure the
relevance of items in search results:

• Exact (E): the item is relevant for the query, and satisfies all
the query specifications [12] (e.g., a phone matching all attributes
of a query “iPhone 11”)

• Substitute (S): the item is somewhat relevant i.e., it fails to
fulfill some aspects of the query but the item can be used as a
functional Substitute [12] (e.g., iPhone 10 for a “iPhone 11” query)

• Complement (C): the item does not fulfill the query, but could
be used in combination with an exact item [12] (e.g., iPhone charger
for “iPhone 11” query)

• Irrelevant (I): the item is irrelevant, or it fails to fulfill a central
aspect of the query [12] (e.g., television for a “iPhone 11” query)

In the Query-Product Ranking task, what we need to do is to
rank the product list of each query, with ‘exact’ at the top, then
‘substitute’ and ‘completion’, and finally ‘irrelevant’, to give users
the best search experience. However, many existing pre-trained
models suffer from several challenges. The performance of the
pre-trained model may be limited by the noise in the data and
the inadaptation of pre-trained models to the product data. For
example, the data contains a large number of HTML tags and special
meaningless characters, which will directly affect the tokenizer of
the pre-trained model because it does not match the vocabulary. At
the same time, for product data, there is very little in the original
training corpus of the pre-trained model, so the model will not
adapt to product data. In addition, the fine-tuning speed of pre-
trained models is slow, and because the fine-tuning data is much
less than the pre-training data, it is easy to overfit.

To address these challenges, our solution consists of three com-
ponents—data preprocessing, pre-training, and fine-tuning. Our
solution is based on the basic model xlm-Roberta [3]. In the data
preprocessing part, we use regular expressions to clean the data.
In addition, we use YAKE [1] algorithm for keyword extraction
and Textrank [11] algorithm for key sentence extraction. In the
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Figure 1: The overall architecture of our method. In the middle of the figure is a schematic diagram of each component. The
left is the method used in each component, and their positions and colors correspond to the components in the middle.

pre-training part, we allow the model to continue MLM [7] pre-
training to adapt to the domain corpus. In the fine-tuning part,
we use ranking loss to accelerate convergence and use FGM [6]
adversarial training to reduce model overfitting and improve the
robustness of the model.

To show the effectiveness of our model, we conduct experiments
on the Shopping Queries Dataset in the KDD cup 2022 - Query-
Product Ranking task of ESCI challenge for improving product
search. Experiments demonstrate that our solution achieves an
nDCG of 0.9028 on the private test dataset.

2 RELATEDWORK
Pre-trained models In recent years, pre-trained models have
brought natural language understanding into a new era. BERT [4]
is a classic model among pre-trained models in recent years, which
stands for Bidirectional Encoder Representations from Transform-
ers. Roberta [8] shows that training BERT for longer on more data
significantly enhances performance. xlm-Roberta shows that large-
scale multilingual models can significantly enhance performance
on a wide range of cross-lingual transfer tasks.
Data Preprocessing The set of techniques used prior to the ap-
plication of a data mining method is named as data preprocessing
for data mining [5]. Data preprocessing usually includes process-
ing missing values and keyword extraction. Many approaches are
available to tackle the problematic imposed by the missing values
in data preprocessing [9]. Keyword extraction includes YAKE based
on statistical features and Textrank based on word graph model.
Pre-training Pre-training is the key process of pre-trained model.
Recent work has shown that continued pre-training of pre-trained
models on domain corpus allows models to adapt to domain tasks
and enhance performance [7].
Fine-tuning Generally, in order to enhance the performance of
the model in downstream tasks, the model will be fine-tuned. The
core of fine-tuning model is to construct loss function. The loss
function is used to evaluate the degree to which the predicted

value of the model is different from the actual value. The more
appropriate the loss function, the better the performance of the
model. The commonly used losses on pre-trained models for fine-
tuning include regression loss and ranking loss, and the choice of
loss is still mainly based on the characteristics of downstream tasks.

3 MODEL ARCHITECTURE
The overall architecture of our method is shown in Figure 1. Our
method contains three components—data preprocessing, pre-training,
and fine-tuning. First, for the original the Shopping Queries Dataset,
we first perform data preprocessing. The basic model is pre-trained
on the preprocessed data to adapt the model to the domain corpus.
It is worth mentioning that our basic model is xlm-Roberta-large.
Then, we fine-tune the basic model on the preprocessed data to
enhance the performance of the model in downstream tasks. Finally,
we build a ranking model that can rank the product list correspond-
ing to the query in the test set.

3.1 Data Preprocessing
Noise in the data can greatly affect the performance of the model on
downstream tasks. Our data preprocessing consists of three steps.
The first is data cleaning, using regular expressions to remove a
large number of HTML tags and special meaningless characters
in the data to make the data purer. Then to prevent the impact of
characters on the model tokenizer, we insert spaces before and after
general characters and convert the data to lowercase. Finally, due
to the limitation of the length and form of the model input, we
splice the columns of the given table data to extract keywords and
key sentences. We use YAKE algorithm for keyword extraction and
Textrank algorithm for key sentence extraction.

3.2 Pre-training
To better adapt the model to the domain corpus, we follow the
paper [7]. We splice the training set and the product catalogue to
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form a pre-training corpus and let the basic model continue MLM
pre-training in the pre-training corpus.

We construct a total of 2 kinds of corpus, the first one is the
splicing of query and product information, and the second is splicing
only with product information. Finally, we find that the model
pre-training on the first kind of corpora will perform better in
downstream tasks.

3.3 Fine-tuning
Fine-tuning a pre-trained model for downstream tasks is generally
slow and prone to overfitting to the training set. In order to fine-tune
the model better, we use ranking loss to accelerate the convergence
of the model, and use FGM (Fast Gradient Method) adversarial
training to reduce model overfitting and improve the robustness of
the model.

3.3.1 Ranking Loss. There are a total of four classes in the product
list corresponding to a query. For the commonly used regression
loss, the scores of the four classes of products corresponding to a
query can only be fitted to four fixed constants. For example:

𝑞 = “iPhone 11”
𝑝1 = “iPhone 11”, 𝑦 (𝑞, 𝑝1) = 1
𝑝2 = “iPhone 10”, 𝑦 (𝑞, 𝑝2) = 2/3
𝑝3 = “charger”, 𝑦 (𝑞, 𝑝3) = 1/3
𝑝4 = “television”, 𝑦 (𝑞, 𝑝3) = 0

(1)

Where 𝑞 means query, then 𝑝 is the product corresponding to 𝑞, and
𝑦 (𝑞, 𝑝𝑖 ) is the label of 𝑝𝑖 corresponding to 𝑞, 1, 2/3, 1/3, and 0 corre-
spond to Exact, Substitute, Complement, and Irrelevant respectively.
Common regression loss is defined as:

𝐿𝑅𝑒 =

𝑁∑︁
𝑖=1

| (𝑓 (𝑞, 𝑝𝑖 ) − 𝑦 (𝑞, 𝑝𝑖 )) | (2)

Where 𝑓 (𝑞, 𝑝𝑖 ) is the output score of the model for the input of 𝑞
and 𝑝𝑖 . 𝑁 is the total number of query-product pairs selected from
the training set.

However, this linear division may not be reasonable, so we can
use ranking loss. For the above example, the output score require-
ment of ranking loss is:

𝑓 (𝑞, 𝑝1) > 𝑓 (𝑞, 𝑝2) > 𝑓 (𝑞, 𝑝3) > 𝑓 (𝑞, 𝑝4) (3)

Ranking loss does not require the output scores of different classes
of products corresponding to a query to be fitted to different con-
stants. Compared with regression loss, ranking loss has less strin-
gent requirements for model output scores, and this can accelerate
the convergence of the model. The ranking loss is defined as

𝐿𝑅𝑎 = max
(
{0} ∪

{
𝑓 (𝑞, 𝑝 𝑗 ) − 𝑓 (𝑞, 𝑝𝑖 )

��𝑦 (𝑞, 𝑝𝑖 ) > 𝑦
(
𝑞, 𝑝 𝑗

)} )
(4)

But the max function is not easy to optimize, we use LogSumExp
to approximate the max operator. The LogSumExp is shown in the
following Equation.

max(𝑥,𝑦, 𝑧, . . .) = lim
𝑘→+∞

1
𝑘
ln

(
𝑒𝑘𝑥 + 𝑒𝑘𝑦 + 𝑒𝑘𝑧 + . . .

)
(5)

Finally, our loss is defined as:

𝐿 = log
©­­«1 +

∑︁
𝑦 (𝑞,𝑝𝑖 )>𝑦(𝑞,𝑝 𝑗 )

𝑒𝑘 (𝑓 (𝑞,𝑝 𝑗 )−𝑓 (𝑞,𝑝𝑖 ))ª®®¬ /𝑘 (6)

3.3.2 FGM adversarial training. Following paper [10], adversarial
training can be written in the following format:

min
𝜃
E(𝑥,𝑦)∼D

[
max
Δ𝑥∈Ω

𝐿(𝑥 + Δ𝑥,𝑦;𝜃 )
]

(7)

Where D represents the training set, 𝑥 represents the input, 𝑦
represents the label, 𝜃 is the model parameter, 𝐿(𝑥 + Δ𝑥,𝑦;𝜃 ) is the
loss of a single sample, Δ𝑥 is the adversarial perturbation, and Ω is
the perturbation space.

The core of adversarial training is to calculate Δ𝑥 . Increasing
Δ𝑥 can increase the difficulty of model training and improve the
robustness of the model, but Δ𝑥 cannot be too large, which will
reduce the performance of the model in downstream tasks. The
FGM method defines Δ𝑥 as:

Δ𝑥 = 𝜖∇𝑥𝐿(𝑥,𝑦;𝜃 ) (8)

Where 𝜖 is a hyperparameter, we find during the experiment that
𝜖 = 1.0 works best. Then, in order to prevent Δ𝑥 from being too
large, it is normalized:

Δ𝑥 = 𝜖 sign (∇𝑥𝐿(𝑥,𝑦;𝜃 )) (9)

4 RESULTS
In this section, we demonstrate the effectiveness of three compo-
nents of our solution. The evaluation indicators in the experiment
all adopt the nDCG calculation method provided by the competition
organizing committee. In our case, we have 4 degrees of relevance
(rel) for each query and product pair: Exact, Substitute, Comple-
ment, and Irrelevant; where we set a gain of 1.0, 0.1, 0.01, and 0.0,
respectively.

We randomly sample 10000 queries from the officially announced
train data as the valid data. The hyperparameters in our method are
as follows: Max length: 256, Lbda: 1, Gradient accumulation steps:
16, Num epochs: 4, Batch size: 1, Sample size: 8, and Learning rate:
1e-5.

The results for different model settings are shown in Table 2.
Briefly speaking, the xlm-Roberta-large model containing all com-
ponents achieves the best nDCG results. Furthermore, Table 1 illus-
trates the effectiveness of our components. Specifically, when the
basic model does not contain the configuration of the components
and is only training with the basic model and regression loss, the
nDCG of the model only reaches 0.8958.When data preprocessing is
then add to the basic model, the model’s nDCG increases to 0.8963.
It is worth emphasizing that the addition of pre-training makes
the performance of the model more obvious, and the nDCG of the
model reaches 0.8993. Finally, the addition of FGM and ranking loss
also achieves a good improvement, and the final model’s nDCG on
the valid data set reaches 0.9018.

As shown in Table 3, the singlemodel achieves an nDCGof 0.9002
on the private test set, and this performance can also rank in the
top 10 on the leaderboard. Then we perform multi-fold training on
the model, and select models with the same training configuration
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Table 1: Experiment results of different valid-part

Model Valid-part nDCG nDCG-fix
0 1 2 3 4 5 6 7 8 9

𝑚𝑜𝑑𝑒𝑙1 0.8974 0.8992 0.8948 0.9014 0.8981 0.9025 0.8961 0.8988 0.8967 0.8997 0.8962
𝑚𝑜𝑑𝑒𝑙2 0.8982 0.8980 0.8945 0.9024 0.8980 0.9012 0.8977 0.8984 0.8973 0.8981 0.8964

Table 2: Experiment results of different model settings.
Re: Regression loss; Dp: Data preprocessing; Pt: MLM pre-
training; Ra: Ranking loss; FGM: FGM adversarial training.

Basic model Model settings nDCG (valid)

xlm-Roberta-large Re 0.8958
xlm-Roberta-large Dp + Re 0.8963
xlm-Roberta-large Dp + Pt + Re 0.8993
xlm-Roberta-large Dp + Pt + Ra 0.9012
xlm-Roberta-large Dp + Pt + Ra + FGM 0.9018

Table 3: Experiment results of the single model and the en-
semble model

Model nDCG (private test)

Single Model 0.9002
Ensemble Model 0.9028

at different checkpoints. Finally, by using ensemble methods, the
ensemble model achieves an nDCG of 0.9028 on private test data
and came fourth on the leaderboard.

5 DISCUSSION
It is worth mentioning that during our experiments, we find that
the final nDCG performance of the model mainly depends on the
test data, especially when the test data is small relative to our valid
data. We randomly select part of our valid data set, and a total of 10
valid-part data with the same number of queries as the private test
set is collected. The experimental results are shown in Table 1. We
find that the nDCG values of the models on these 10 datasets are
quite different, and the nDCG fluctuates greatly between different
models, making it difficult to evaluate the performance of the two
models. However, an excellent model should be insensitive to the
distribution of test data. Its mean value on all test data should be
relatively large and its standard deviation should be relatively small.
Therefore, we propose amore reasonable calculationmethod nDCG-
fix: take the mean 𝑎𝑣𝑔 and standard deviation 𝑠𝑡𝑑 of the nDCG of
the 10 valid-part datasets, and the final nDCG-fix = 𝑎𝑣𝑔 − 𝑠𝑡𝑑 .

6 CONCLUSIONS
In this paper, we introduce our solution for the KDD cup 2022 -
Query-Product Ranking task of ESCI challenge for improving prod-
uct search. In our solution, we integrate three components—data
preprocessing, pre-training, and fine-tuning. Experiments demon-
strate that all three components of our method are effective, and

our solution finally ranks fourth on the leaderboard. It is worth
emphasizing that the addition of pre-training makes the perfor-
mance of the model more obvious than other components. At the
same time, we experimentally find that the calculation of nDCG
on the current private test set may be unreasonable. We propose
a modified nDCG calculation method nDCG-fix to better evaluate
model performance.
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