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Figure 1: Overall schema of our proposed solution for Amazon KDD CUP 2022 for all three tasks.

ABSTRACT
In the Amazon KDD Cup 2022, we aim to apply natural language
processing methods to improve the quality of search results that can
significantly enhance user experience and engagement with search
engines for e-commerce. We discuss our practical solution for this
competition, ranking 6th in task one, 2nd in task two, and 2nd in
task 3. The code is available at https://github.com/wufanyou/KDD-
Cup-2022-Amazon.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Query
representation; • Applied computing→ Online shopping.
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1 PROBLEM DESCRIPTION
The organizer provides a dataset called the Shopping Queries Dataset [5].
It is a large-scale, manually annotated dataset composed of chal-
lenging customer queries. The data is multilingual and includes
English, Japanese, and Spanish queries. It comprises query-result
pairs with annotated four classes of relevance (ESCI labels):

• Exact (E): the item is relevant for the query and satisfies all
the query specifications;

• Substitute (S): the item is somewhat relevant: it fails to
fulfill some aspects of the query, but the item can be used as
a functional substitute;

• Complement (C): the item does not fulfill the query but
could be used in combination with an exact item;

• Irrelevant (I): the item is irrelevant, or it fails to fulfill a
central aspect of the query.

The primary objective of this competition is to build new ranking
strategies and, simultaneously, identify interesting categories of
results (i.e., substitutes) that can be used to improve the customer
experience when searching for products. The three different tasks
for this KDD Cup competition using our Shopping Queries Dataset
are:
T1. Query-Product Ranking
T2. Multiclass Product Classification
T3. Product Substitute Identification
Task one (T1) aims at ranking the relevance of a subset of the

ESCI dataset by using Normalized Discounted Cumulative
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Gain (nDCG) score to measure the performance. The organizer
designed a customized Discounted Cumulative Gain (DCG)
of 1.0, 0.1, 0.01 and 0.0, for Exact, Substitute, Complement and
Irrelevant respectively.

Task two (T2) aims to classify each product as being an Exact,
Substitute, Complement, or Irrelevant match for the query. The
Micro-F1 (equivalent to accuracy here) will be used to evaluate
the methods. Task three (T3) is a binary classification problem that
tries to distinguish whether a query product pair is a Substitute or
not and uses the Micro-F1 score as well to measure the performance.

T1 uses a subset of ECSI dataset, while T2 and T3 use the same
dataset. It is natural to treat this competition as two different prob-
lems (ranking and classification). In the rest of the paper, we will
use short-term T2T3 to represent tasks two and three. This inner
difference among tasks is also reflected on the final leaderboard
that the final ranking of T1 and T2T3 are not correlated well. The
setup also involves a potential data leakage, which we will discuss
further in section 2.

2 EXPLORE DATA ANALYSIS
ECSI dataset contains three tables, which are product_catalogue,
train and test. The test is also decomposed into public and
private where the latter one is unseen to us. In this section, we
make our special observation of product_catalogue and train
that play an important role in the final leaderboard.

T1 and T2T3 use different product_catalogue tables. Figure 2
shows the order of product entries in T2T3. T1 remains a similar
pattern unless it is started with es entries (es → us → jp). There is
a part of products that have not been used in the both training set
and the public test set, and we conjecture those entries are unique
in the private test set.

us es jp us es jp us es jp

index 

Training Set Public Test Set?

Figure 2: The order of product entries in T2T3.

Let us have another investigation about train. Figure 3 shows
the histogram of products grouped by queries in T1 and T2T3.
Generally, most queries will sample 16 and 40 products for training
and test sets. And this distribution is slightly different between T1
and T2T3, while we know that there are fewer Exact labels in T1. So
associated with this prior knowledge, using this product number as
a feature to calibrate the prediction will make some improvement
in the leaderboard.

Another important piece of information in the training set is
that the proportion of ESCI labels in T1 and T2T3 are different
(Figure 4). This difference creates a well-known data leakage for

16

40 rest
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40

20774
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Figure 3: The histogram of products grouped by queries in
the training set. 16 and 40 are the typical number of products
for each query.

most participants in T2T3 that distinguishing whether a query-
product pair is in T1 will improve results. However, it isn’t easy to
use this information directly in the private test set.

E 65%E 44%

S 34%

S 22%

I 17%

Figure 4: The proportion of ESCI labels in T1 and T2T3 train-
ing set.

Besides the above-described deep dive, some other patterns will
help to improve the scores. Here is the summary of that information:

E1. The order of the product catalog is not randomized (training
set→ private test set→ public test set).

E2. Most products are used once.
E3. The ESCI label proportion is different between T1 and T2T3.
E4. Most queries have 16 or 40 product numbers and the label

distribution of those queries are slightly different.
E5. The product id is called ASIN and will be identical to ISBN

(starts with digits) if the product has ISBN.
E6. Most query products group has fewer unique brand num-

bers than product numbers and the product with the most
frequent brand tends to be labeled as Exact.

E7. At least one product in a query-products group will be la-
beled as Exact, and the label of the query-product pair is
affected by other labels in this group as well.

Combining those explorations, we could significantly improve
scores for all three tasks. A detailed feature engineering will be
introduced in Section 3.2.

3 PROPOSED SOLUTION
Figure 1 shows the general schema of our proposed solution for
Amazon KDD CUP 2022 for all three tasks. As we planned to attend
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Figure 5: Our milestone of public leaderboard score for T2. We use red points and blue points to represent the improvement
from cross-encoders models or the gain from feature engineering, respectively.

to all three tasks, for efficiency, we have to train the cross-encoders
once and use them for all three tasks. This strategy makes this two-
stage solution the only choice. So we trained all cross-encoders with
all data from T1 and T2T3 in two folds and then combined the four
class probabilities with other essential features, using lightGBM to
fuse and calibrate the prediction and adapt results to different tasks.
Figure 5 shows the milestone of the public leaderboard score for
T2. In the following, we will discuss those milestones in detail.

3.1 Cross-Encoder Architecture
In the first stage, we applied the classical cross encoder [6] archi-
tecture with only minor modifications. As the product context has
multiple fields (title, brand, and so on), we use neither the CLS token
normean (max) pooling to get the latent vector of the query-product
pair. Instead, we concatenate the hidden states of predefined tokens
(query, title, brand color, etc.). This small modification yields about
a 0.002 increase in the T2 public leaderboard (0.802→ 0.804).

In the final solution, we ensembled three cross-encoders for each
language that differ from pre-trained models, the training data,
or the input fields. For Engish entries, we used DeBERTaV3 [2],
BigBird [7] and COCO-LM [4]. While for Japanese and Spanish
ones, we used a multi-language version of DeBERTaV3. All those
pre-trained data could be found at Huggerface. Table 1 shows the
average accuracy for each model for T2. By ensemble of all models,
the score for the public leaderboard for task two is 0.818.

Table 1: Average accuracy for each model for T2. Here we
used 2-fold cross-validation. Note for code submission, we
used the different seeds to split data, so the accuracy here is
not very comparable.

Locale Pretrained Model Accuracy

us bigbird-roberta-base 0.7587
cocolm-base 0.7588
debertav3-base 0.7585

es mdeberta-v3-base 0.7347

jp mdeberta-v3-base 0.7006

3.2 Feature Engineering
Once stacking a lot of models has tiny improvements for both local
and online tests, we start to do some feature engineering based on
our exploration in section 2.

3.2.1 Leakage Features. Combining E1, E2, and E3 together, we
designed a feature that measures the percentage of product_id
in Task 1 product list grouped by query_id. This feature gives us
a 0.005 improvement in the T2 public leaderboard and remains
effective for the private test set, and that’s why we are extremely
closed to first place in T2 (0.0001 difference).

3.2.2 Query product number features. Based on E4, we use the
product number for each query as a feature and obtain an approxi-
mate 0.002 improvement in the T2 public leaderboard.

3.2.3 Product ID features. Based on E5, we designed features that
measure whether the product_id is ISBN or not and whether the
query-products group has an ISBN product or not. This feature gives
us an approximate 0.001 improvement in the T2 public leaderboard.

3.2.4 Brand Features. Based on E6, we designed features that mea-
sure the unique number of brands in a query-products group and
whether the brand of the product is the most frequent one in the
group. This feature gives us an approximate 0.001 improvement in
the T2 public leaderboard.

3.2.5 Group Features. Based on E7, we designed several stats (min,
medium, and max) of the cross encoder output probability grouped
by query_id. This feature gives us a 0.008 improvement in the T2
public leaderboard.

3.3 LightGBM model
3.3.1 T1. As the ECSI label distribution is different in T1 and T2T3,
for T1, we train the lightGBM model with T1 data only to simulate
this distribution and calculate the expected gain for each query-
product pair as:

𝑠 = 𝑝𝑒 + 0.1 · 𝑝𝑠 + 0.01 · 𝑝𝑐 , (1)

where 𝑝𝑒 , 𝑝𝑠 and 𝑝𝑐 are the probability output of lightGBM for
label Exact, Substitute and Irrelevant respectively. Then we sort
the query-product list by this gain. This method is slightly better
than using LambdaRank [1] with the same label gain (0,0.01,0.1,1)
in LightGBM.

3.3.2 T2T3. We use full data from T1 and T2T3, and use lightGBM
to train either a four-class classifier (T2) or a binary classifier (T3).

3.3.3 Model ensemble. For T1, T2, and T3, we average the gain or
the prediction from 6 models (3 models x 2 folds) for each language
to make a final decision.
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4 INFERENCE ACCELERATION
During the code submission round, the organizer proposed a 120
minutes time limit for all three tasks. This time limit requests us to
provide a more efficient solution.

4.1 Knowledge Distillation
We use knowledge distillation [3] to improve the model’s perfor-
mance. This knowledge distillation is applied to English entries
only. We used all data and trained large versions of DeBERTaV3,
BigBird, and COCO-LM. Then we used a linear combination loss
of cross-entropy (loss between prediction and ground truth) and
mean-square-error (logit difference between student model and
teacher model).

4.2 Other Inference Acceleration Strategies
Here are we listed some other inference acceleration strategies:
A1. Pre-process product token and save it as an HDF5 file.
A2. Transfer all models to ONNX with FP16 precision.
A3. Pre-sort the query-product pair to reduce the side impact of

batch zero padding.

A4. Use a relatively small mini-batch size (= 4) when inference.
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