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Due to limited resources and time for verification,
we set k=2 in k-fold cross validation and model
ensemble (average results for each fold). The baseline
is DeBERTaV3-large for the us locale, while
mDeBERTaV3-base for the es locale and the jp locale. ‘-
" in the Fold column means that the model do not use
k-fold, and ‘-’ in the Private Test nDCG column means
that we can not get the result. Our final solution

Given a user specified query and a list of matched  2auery, producty sCOtee
products, the goal of this task is to rank the products so 5 '
that the relevant products are ranked above the non-
relevant ones[1]. Relevance is broken down into four
classes, named Exact(E), Substitute(S), Complement(C)
and Irrelevant(l).
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Regression Layer, where the regression layer is a normal

fully connection layer. For different locales, we select

. . . Figure 5. Online results.
Data distribution and supplement data different BERT Encoders. Summary information is shown ;

The train data distribution of task 1 is {‘exact’ in Figure 3. The unified framework is shown in Figure 4.

43.64%, ‘substitute’: 34.27%, ‘irrelevant’: 16.89%, We strictly follow the implementation described in the Conclusions
’ lement’: 5.187%}. we add the supplementary data original - paper[1] for the settings of the hyper-
omp L ' parameters. According to our attempt and work, BERT Encoder

from task 2 and task 3 to taskl. All the data are listed in

. + Regression layer also can get relatively good result.
Figure 2.

Task 1 train data - Supplement data
(36.40%)

{:,.éi_;}?;,;} 632489 Bl train data Stage 1 Data Process Contact

supplement data
Bl all data

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

[ Original ] DataSupplemegt[ Expanded } DataPreprocesg[ Processed ] https://ocean.163.com

Train Data Train Data Train Data

(50.40%)
481676

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
......
L

Acknowledgments

[ Final score } This work was supported by NetEase Games Operation

Department and NetEase Game Security.

(43.64%)
341168

(17.88%) :
310709 :

Training with Gradient-Disentangled Embedding Sharing.
| [2] Chandan K. Reddy, Lluis Marquez, Fran Valero, Nikhil Rao, Hugo
e e 2 e D ’ Zaragoza, Sambaran Bandyopadhyay, Arnab Biswas, Anlu Xing,

(30.48%)
291321 l l :
. [ Averaged Predict ] ( Model 1 J ( Model 2 J Refe rences
80415 IAV‘?”“QE | | [1] Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Q8552 133504 [ — ] i [ Predict 1 ] [ redict 2 ] DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-

(4.473%)

- (5.187%)
42747

40551

irrelevant exact substitute complement

and Karthik Subbian. 2022.Shopping Queries Dataset: A Large-
Figure 2. Data of task 1 distribution. Figure 4. The unified framework of our solution. Scale ESCI Benchmark for Improving Product Search.



