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Model Architectures
The overall architecture of our method is shown in 

Figure 1. The first step is to obtain semantic 
representation of query and product by fine-tuning a 
pretrained language model where we use RoBERTa-large
and DeBERTa-v3-large for English, mDeBERTa-v3-base 
and XLM-RoBERTa-large for Japanese and Spanish. Then 
we feed the last hidden states of the pretrained models
into a Bi-LSTM layer. Finally, the output of Bi-LSTM is fed 
into the dense layer to get the prediction.

• Hyperparameters
max length of input: 500
learning rate of pretrained model: 7e-6 for DeBERTa-
v3-large and 2e-5 for others
learning rate of Bi-LSTM and MLP parameters: 1e-3
batch size: 32
freeze embedding parameters
linear schedule with warmup: 5% warmup stepsFigure 1. Overall Model Architecture

Figure 2. Cross Features

Discussion

• Cross Features
The dataset consists of Query-Product pairs, and 
there are some products that appears in different 
queries, which we believe should be useful.

Train Strategies
• 5-fold cross-validation

We train all the models by 5-fold cross-validation, but 
we do not use all the 5-fold results in the final 
submission due to the limitation of the online 
submission system

• Loss Functions
we use MSE loss function (the four categories are 
mapped as 1.0, 0.1, 0.01 and 0). For task2 and task3, 
we use Cross Entropy loss function.

• Domain-adaptive pretraining
a second phase of pretraining in domain leads to 
performance gains. In our methods, we continued to 
pretrain XLM-RoBERTa-large and RoBERTa-large using 
the competition dataset and achieved better result in 
task1.

• Ensemble
For task1, we train several different versions of 
models and apply weigthed average to get better 
result. Due to the limitation of time the computation 
resources, we only use 3 of 5 folds models in task2 
and 2 of 5 folds models in task3.

• Multi-task learning
On task2 and task3, we use multi-task learning and 
achieve about 0.1%~0.2% improvement on local 
validation set. In task2, we jointly train four 2-class 
classifiers while training the main 4-class classifier. In 
task3, we jointly train the four classifier and the 
classifier of substitute label. The loss functions are as 
follows:

• Data augmentation
we experimented with translation and text 
generation to augment the data. Specifically, we 
translated the Japanese and Spanish dataset into 
English and also trained a BART text generation 
model to generate query from product title and 
bullet point, but these methods didn’t work due to 
the extra noise probably introduced.

• Post-processing
In this challenge, we find that given a query, the 
more non-Exact categories in the candidate 
products, the lower NDCG score is likely to be. 
These Query-Product pairs can be considered as 
hard cases. The intuition of post-processing is to 
pick out these hard pairs according to the score 
distribution predicted by stage-1 models, and then 
train a stage-2 model with the query and product 
title of multiple pairs, an example is shown in 
Figure3. Ultimately, we did not achieve higher NDCG 
score than stage-1 model in this way, so we think 
maybe better modeling methods and more 
experiments are needed.

Figure 3. a possible post-processing architecture


