KDD-Cup'22

Amazon Product Search Competition

Background

- In the competition, we build product query search model and it is a rank task.
- 2. There are large-scale multilingual query-product dataset. (781744 pair)

Open source code : https://github.com/ChengHSUHSU/KDD_Cup2022_AmazonProductSearchESCI

Data Introduction

Exact (E), Substitute (S), Complement (C), Irrelevant (I)

	query_id	query	query_locale	product_id	esci_label	product_new_id
0	0	!awnmower tires without rims	us	B00004RA3F	irrelevant	B00004RA3F@us
1	0	!awnmower tires without rims	us	B0018TWDOI	exact	B0018TWDOI@us
2	0	!awnmower tires without rims	us	B00505Y3QI	exact	B005O5Y3QI@us

us, es, jp

	product_id	product_title	product_description	product_bullet_point	product_brand	product_color_name	product_locale	product_new_id
0	B0188A3QRM	Amazon Basics Woodcased #2 Pencils, Unsharpene	Empty	144 woodcase #2 HB pencils made from high-qual	Amazon Basics	Yellow	us	B0188A3QRM@us
1	B075VXJ9VG	BAZIC Pencil #2 HB Pencils, Latex Free Eraser,	BACK TO BAZIC Our go	⭐ UN-SHARPENED #2 PREMIUM PENCILS. Each	BAZIC Products	12-count	us	B075VXJ9VG@us
2	B07G7F6JZ6	Emraw Pre Sharpened Round Primary Size No 2 Ju	Emraw Pre- Sharpened #2 HB Wood Pencils	✓ PACK OF 8 NUMBER 2 PRESHARPENED BEGINNERS PE	Emraw	Yellow	us	B07G7F6JZ6@us

Problem Statement

Input:

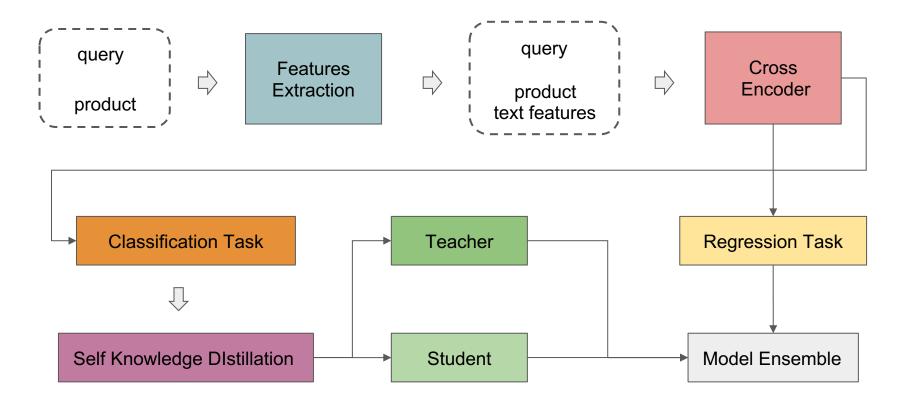
query_id	query	query_locale	product_id	
Query_1	"Query_1"	us	product_23	
Query_2	"Query_2"	us	product_234	

	Exact (E)	Substitute (S)	Complement (C)	Irrelevant (I)	
gain	1.0	0.1	0.01	0.0	

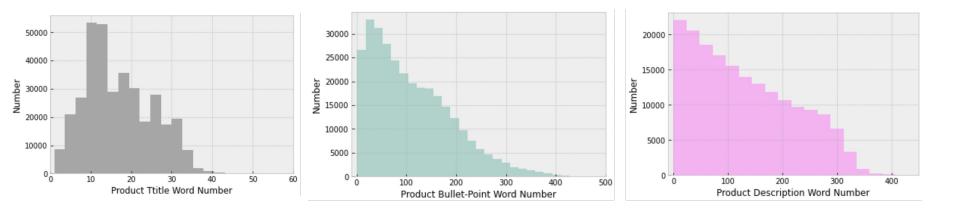
query_id	product_id
Query_1	product_50
Query_1	product_900
Query_1	product_80
Query_2	product_32

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$
$$IDCG_p = \sum_{i=1}^{|REL_p|} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$
$$nDCG_p = \frac{DCG_p}{IDCG_p}$$

Model Framework

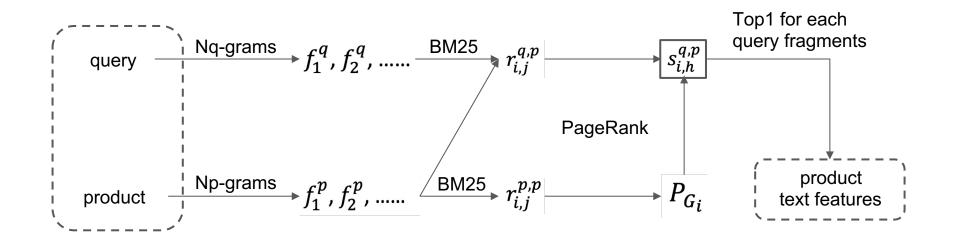


Product Documents Features Extraction (1)

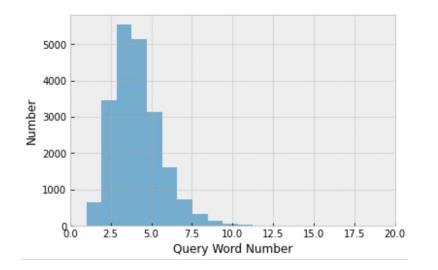


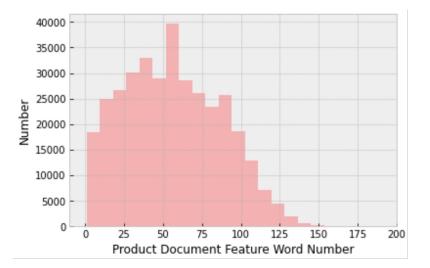
Locale : US

Product Documents Features Extraction (2)



Product Documents Features Extraction (3)





Locale : US

Cross Encoder

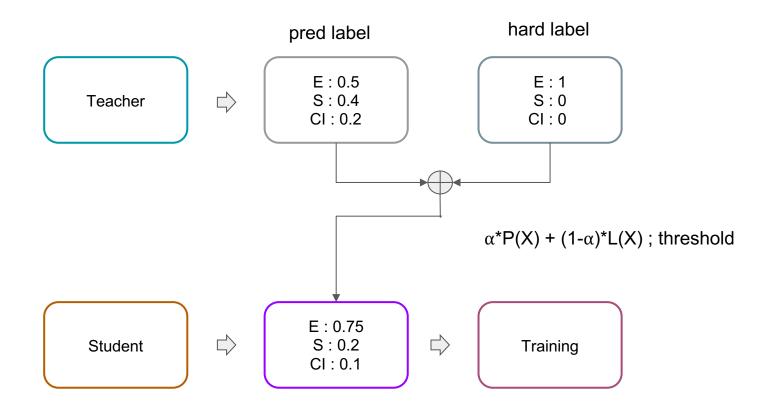
[CLS] + query + [SEP] + product text features + [SEP]

- 1. Regression : ranking order by predicted value
- 2. Classification : $P_E^* gain_E + P_S^* gain_S + P_C^* gain_C + P_I^* gain_I$

Note : After some experiments, we found that Regression task can balancely show well performance and Classification task can achieve better performance in Exact(E) label

 α = 0.5 ; threshold=0.8

Self-Knowledge Distillation



Training Strategies

- Regression task : We design <u>two training stage</u>. First, we set Exact (E) label as 1.0 and other as 0.0. Second, we set Exact (E) label as1.0, Substitute (S) label as 0.4 and other as 0.0.
- 2. Classification task : After training large model (teacher), we use <u>self-knowledge distillation</u> and label smoothing to train student model.
- 3. Model Ensemble : Regression-Second-Stage + Classification-Teacher + Classification-Student

Experiment Setting

- 1. All modeling are one-epoch
- 2. Metric : nDCG (gain : official setting)
- 3. Optimizor : AdamW
- 4. Loss function : MSE, Cross Entropy
- 5. Learning Rate : 7e-5 (warm-down mechanism)

Experiment Performance

	English(US)			Spanish(ES)			Japanese(JP)					
Label	TFKD	CLF	REG	CLF+REG	TFKD	CLF	REG	CLF+REG	TFKD	CLF	REG	CLF+REG
E-S	0.835	0.829	0.824	0.829	0.831	0.819	0.817	0.823	0.839	0.831	0.829	0.831
E-CI	0.891	0.884	0.882	0.886	0.893	0.887	0.884	0.889	0.891	0.887	0.886	0.888
S-CI	0.823	0.798	0.816	0.819	0.821	0.784	0.812	0.815	0.821	0.768	0.819	0.817
ESCI	0.894	0.885	0.884	0.888	0.896	0.888	0.889	0.890	0.897	0.891	0.892	0.892

Experiment (Feature Extraction)

Component	E-S	E-CI	S-CI	ESCI
None	0.825	0.880	0.820	0.884
$N_q = 2, N_p = 8$	0.834	0.891	0.823	0.891
$N_{q}=3, N_{p}=8$	0.836	0.891	0.821	0.896
$N_{q} = 4, N_{p} = 8$	0.836	0.890	0.823	0.895
$N_q = 2, N_p = 9$	0.833	0.889	0.822	0.890
$N_q = 3, N_p = 9$	0.835	0.892	0.820	0.896
$N_q = 4, N_p = 9$	0.833	0.891	0.822	0.893

Experiment (Self-Knowledge Distillation)

Table 4: Self-knowledge distillation experiment. we set the range of knowledge distillation threshold t is in (0.0, 0.7, 0.8). We don't use teacher model output as soft label when nDCG score of given query is lower than t and we use label smoothing as soft label. When t is 0.0, it means we only use teacher model output as self label.

Component	E-S	E-CI	S-CI	ESCI
teacher	0.831	0.889	0.823	0.892
student(t=0.0)	0.826	0.884	0.817	0.886
student(t=0.7)	0.827	0.885	0.817	0.889
student(t=0.8)	0.828	0.885	0.816	0.890
ensemble(t=0.0)	0.833	0.889	0.819	0.893
ensemble(t=0.7)	0.835	0.891	0.821	0.895
ensemble(t=0.8)	0.836	0.891	0.821	0.896

Conclusion

- 1. In the paper, we use cross encoder to predict the relevance of query, product. When user query intent is ambiguous, the performance is not well.
- 2. In the future, we build <u>query-product word-level graph</u> and use GNN to represent more semantic embedding. We believe that it can improve more performance.